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Abstract. We apply the hydrologic landscapes (HL) concept to assess the hydrologic vulnerability of the western 26 

United States (U.S.) to projected climate conditions. Our goal is to understand the potential impacts for stakeholder-27 

defined interests across large geographic areas. The basic assumption of the HL approach is that catchments that share 28 

similar physical and climatic characteristics are expected to have similar hydrologic characteristics. We map climate 29 

vulnerability by integrating the HL approach into a retrospective analysis of historical data to assess variability in 30 

future climate projections and hydrology, which includes temperature, precipitation, potential evapotranspiration, 31 

snow accumulation, climatic moisture, surplus water, and seasonality of water surplus. Projections that are not within 32 

two-standard deviations of the historical decadal average contribute to the vulnerability index for each metric. This 33 

allows stakeholders and/or water resource managers to understand the potential impacts of future conditions. In this 34 

paper, we present example assessments of hydrologic vulnerability of specific geographic locations (Sonoma Valley, 35 

Willamette Valley, and Mount Hood) that are important to the ski and wine industries to illustrate how our approach 36 

might be used by specific stakeholders. The resulting vulnerability maps show that temperature and potential 37 

evapotranspiration are consistently projected to have high vulnerability indices for the western U.S. Precipitation 38 

vulnerability is not as spatially uniform as temperature. The highest elevation areas with snow are projected to 39 

experience significant changes in snow accumulation. The seasonality vulnerability map shows that specific 40 

mountainous areas in the West are most prone to changes in seasonality, whereas many transitional terrains are 41 

moderately susceptible. This paper illustrates how the HL approach can help assess climatic and hydrologic 42 

vulnerability across large spatial scales. By combining the HL concept and climate vulnerability analyses, we provide 43 

a planning approach that could allow resource managers to consider how future climate conditions may impact 44 

important economic and conservation resources.  45 

1 Introduction 46 

A stable and predictable water supply is imperative to national security (National Intelligence Council, 2012), 47 

especially as it pertains to the global food supply, and the threats of increased flooding, droughts, wildfire, and more 48 

extreme temperatures (Mancosu et al., 2015; Mekonnen and Hoekstra, 2016). The recognition of the potential threats 49 

of climate on society is important, and the development of planning tools could help decision-makers assess the risk 50 

imposed by projected environmental changes, such as those imposed by climate, population growth, or habitat 51 

conversion (Glick et al., 2011; Lawler et al., 2010). Environmental changes related to climate and hydrology will not 52 

impact stakeholders equally across sectors, thus the specific concerns and adaptation strategies of different industries 53 

will vary.  54 

Numerous studies have examined projected changes in climate and hydrology on regional and national scales that 55 

included the western U.S. The Third National Climate Assessment (http://nca2014.globalchange.gov) is a 56 

comprehensive resource for climate-related research in the U.S. (Melillo et al., 2014). Nolin and Daly (2006) mapped 57 

climate-related risk to snow-dominated areas and ski areas in the Pacific Northwest. Mote et al. (2005) compared the 58 

spatial patterns of snow water equivalent observations to model simulations in the western U.S. Brown and Mote 59 

(2009) examined projected changes in snow water equivalent globally based on 14 model projections. Barnett et al. 60 

(2005) identified potential climate-driven water supply deficits in snow-dominated areas around the globe, although 61 

rising water demands have been found to greatly outweigh potential climate impacts on future (year 2025) water 62 
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supply (Vorosmarty et al., 2000). McAfee (2013) examined projected changes in potential evapotranspiration (PET, 63 

calculated using numerous methods) between 2002-2011 and 2079-2098. The findings are consistent across studies 64 

in many areas of the globe including across the conterminous U.S., but other regional PET predictions were 65 

inconsistent and sensitive to the method of calculation. Hill et al. (2013, 2014) predicted thermal vulnerability of 66 

streams and river ecosystems to climate across the U.S., while Battin et al. (2007) found that in regards to salmon 67 

habitat, snow-dominated streams were more vulnerable habitat than lowland streams. The analyses of Nijssen et al. 68 

(2001) on hydrologic sensitivity of rivers globally found: 1) Ubiquitous warming, with greatest warming in winter 69 

months at higher latitudes, 2) More precipitation with high variability, 3) Early to mid-spring snowmelt caused 70 

increased spring streamflow peak in coldest basins, decreased spring runoff and increased winter runoff in transitional 71 

basins, 4) Tropical or mid-latitude basins had decreased annual runoff, and 5) High latitude basins had increased 72 

annual streamflow. In response to droughts of the recent past, Mann and Gleick (2015) highlight the strong correlation 73 

between very hot years and very dry years; thus as temperatures increase, precipitation is becoming more scarce. A 74 

study by Cook et al. (2015) found a growing risk of unprecedented drought in the western U.S. based on temperature 75 

projections and no clear pattern in future precipitation.  76 

“Vulnerability” has many accepted definitions depending upon discipline and application (Adger, 2006; Füssel, 2007). 77 

Vulnerability assessments often integrate exposure, sensitivity, and adaptive capacity to stressors (Adger, 2006; 78 

Füssel, 2007; Füssel and Klein, 2006; IPCC, 2014). Researchers have studied vulnerability at varying scales across 79 

numerous regions for a diversity of stakeholders, and they tend to focus on the most relevant metrics for their particular 80 

application (Farley et al., 2011; Glick et al., 2011; IPCC, 2014; Nolin and Daly, 2006; U.S. Global Change Research 81 

Program, 2011; Watson et al., 2013). Yet, better products and services are needed to enable local communities to plan 82 

for and respond to hydrologic change, which includes services that improve understanding, observing, forecasting, 83 

and warning about significant hydrologic events (Tansel, 2013). Glick et al. (2011) and Lawler et al. (2010) both 84 

emphasize the importance to managers of understanding the potential impacts of climate on the resources that they 85 

manage. 86 

There have been many efforts to assess hydrologic vulnerability related to specific stakeholders, ecosystems, or 87 

locations. For example, Vӧrӧsmarty et al. (2000) examined the vulnerability of global water resources to changes in 88 

climate and population growth. Hill et al. (2014) assessed stream temperature vulnerability to climate for sites across 89 

the U.S. In another example, Winter (2000) suggested that the vulnerability of wetlands to changes in climate depends 90 

upon their position within the hydrologic landscape.  91 

There are opportunities to build upon previous efforts to map hydrologic vulnerability across large geographic areas, 92 

while creating tools that stakeholders may use to understand the potential impacts for their asset of interest in specific 93 

watersheds. Winter (2001) described the concept of classifying the physical landscape and climatic properties of 94 

catchments based on hydrologic landscapes (HL). Surface and ground water availability in watersheds is impacted by 95 

differences in geology, terrain, soils, seasonal temperature patterns, precipitation magnitude, and precipitation timing 96 

(Tague et al., 2013; Winter, 2001) and are not uniform across regions (Hamlet, 2011; Jung and Chang, 2012; Tague 97 

and Grant, 2004). Catchments that share similar key physical and climatic characteristics are expected to have similar 98 
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hydrologic characteristics; i.e., surface and ground water interactions, deposition, timing, and accumulation of 99 

precipitation, surface runoff patterns, and groundwater flow (Nolin, 2011; Thompson and Wallace, 2001).  100 

The HL concept has been applied to the U.S. (Wolock et al., 2004) and modified approaches have been used in Oregon 101 

(Leibowitz et al., 2014; Patil et al., 2014; Wigington et al., 2013), Nevada (Maurer et al., 2004), the Pacific Northwest 102 

(Comeleo et al., 2014; Leibowitz et al., 2016), and Bristol Bay, Alaska (Todd et al., 2017). In applying the HL 103 

approach in Oregon and the Pacific Northwest, two climatic factors and three landscape characteristics were 104 

categorized for each catchment; the resulting classification allows the prediction of catchment-scale hydrologic 105 

behavior across large spatial scales. The approach shows promise in predicting seasonal and monthly hydrologic 106 

patterns (Leibowitz et al., 2014). Leibowitz et al. (2014) adapted the classification system applied by Wigington et al. 107 

(2013) to illustrate the applicability of HLs for representing normal (1971-2000) monthly average streamflow in three 108 

case study watersheds in Oregon. They used climate projections (2041-2070) to estimate hydrologic behavior of 109 

catchments relative to 1971-2000. Leibowitz et al. (2016) expanded the approach and applied the HL classification to 110 

Oregon, Washington, and Idaho.  111 

A number of tactics have been used to investigate the influence of climate on hydrologic behavior (Luce and Holden, 112 

2009; Safeeq et al., 2014; Vano et al., 2015). To extend the work previously completed from HL-based climate 113 

projections, we assess climate vulnerability at the catchment scale by integrating the HL approach into an analysis of 114 

climatic variability. Our hydrologic landscape vulnerability analysis (HLVA) provides spatially continuous, 115 

application-specific estimates of climatic vulnerability. One of the benefits of the HLVA is to place modern and 116 

projected environmental changes in the context of available historic data. In the HLVA, we use proxies for the three 117 

components of vulnerability: a) historic climate data and their derivatives as proxies for sensitivity; b) climate 118 

projections as proxies for exposure; and c) qualitative considerations of ecosystems, stakeholders, or industries as 119 

proxies for adaptive capacity. The HLVA assesses vulnerability to changes in temperature, precipitation, potential 120 

evapotranspiration, snow accumulation, climatic moisture, surplus water, and seasonality of the water surplus. This 121 

method highlights areas that are projected to experience deviations from historic conditions to understand the patterns 122 

in magnitude, timing, and type of precipitation and the quantity and seasonality of available water at a catchment 123 

scale.  124 

We apply the HL concept with the goal of assessing the hydrologic vulnerability of the western U.S. to magnitude and 125 

variability in climate projections. We analyzed this data to address three research objectives: 1) develop an index of 126 

vulnerability based on past and projected climate behavior; 2) map areas that are projected to be more vulnerable to 127 

environmental changes associated with climate; and 3) determine the vulnerability indices of seven metrics 128 

(temperature, precipitation, snow accumulation, PET, surplus water (S’), Feddema Moisture Index (FMI; Feddema, 129 

2005), and seasonality) for specific geographic areas, including three examples of industries that are economically 130 

important in the region.  131 

2 Methods 132 

2.1 Study Area 133 
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The study area includes the states of Washington, Oregon, Idaho, California, Nevada, and Arizona in the western U.S. 134 

(Fig. 1). These states extend across a wide range of climates and diverse physiographic settings. The lowest elevation 135 

across the six states is 85 m below sea level (Death Valley, California), while the highest elevation is 4421 m above 136 

sea level (Mt. Whitney, California) [U.S.G.S. National Elevation Dataset available at: 137 

https://nationalmap.gov/elevation.html]. The Sierra-Nevada Mountains are oriented in a north-south direction near the 138 

eastern border of California and transition to the Cascade mountain range that runs in a north/south direction through 139 

Oregon and Washington. (US Topo Quadrangles available at: https://nationalmap.gov/ustopo). However, there are 140 

numerous mountain ranges in each of the other states as well. The Sierra-Nevada and Cascade mountain ranges 141 

generate orographic effects that cause upwind areas to the west to have much greater precipitation relative to the 142 

downwind, eastern regions (Dettinger et al., 2004; Siler et al., 2013). High elevation areas receive most of their 143 

precipitation as snow (Brekke et al., 2009; Mote et al., 2005), while lowland and coastal areas receive their 144 

precipitation mostly as rain (Brekke et al., 2009; Mock, 1996), but much of the six-state area receives a balance of 145 

snow and rain. The topographic differences across the landscape drive precipitation patterns across the six state study 146 

area and cause large differences in the total annual precipitation or the seasonality of maximum precipitation (Mock, 147 

1996). In the arid southwest, summer monsoons deliver most of the annual precipitation (Mock, 1996), whereas in the 148 

Pacific Northwest, winter rains and snows are the dominant form of precipitation (Mock, 1996). However, the western 149 

U.S. is regularly affected by atmospheric rivers that deliver large quantities of rain or snow over short periods 150 

(Dettinger, 2011; Hidalgo et al., 2009). The seasonal variability of surface air temperature varies widely across the 151 

study area. Portions of each state in our study area are classified as deserts with summer maximum temperatures 152 

regularly exceeding 40°C (NOAA State Climate Extremes Committee, 2016). Each state in the study area has also 153 

recorded temperatures less than -40°C (NOAA State Climate Extremes Committee, 2016). Some portions of the study 154 

area have very mild climates with little seasonal variation in temperature (Daly, 2016b). Bedrock geology in the study 155 

area varies from high permeability sedimentary deposits or relatively recent volcanic deposits, to low permeability 156 

igneous metamorphic and sedimentary formations and older volcanics (Comeleo et al., 2014; Stratton et al., 2016). 157 

2.2 Hydrologic landscape classification 158 

The study area was divided into 29,356 assessment units (AUs). The AUs are aggregations of NHDPlusV2 catchments 159 

(McKay et al., 2012) that were grouped to have a target area of 80 km2, as described in Wigington et al. (2013) and 160 

modified by Leibowitz et al. (2016). For this analysis, we retain an AU if its centroid was located within the boundary 161 

of our project area or if the AU extended across an international boundary. All AU polygons are also clipped to the 162 

international boundary of the U.S. These conditions allow us to avoid edge effects at international and state borders 163 

by avoiding overlapping AUs at state boundaries and analyzing the HLs up to all international borders. The project 164 

boundary was defined by merging these AUs into a single polygon.  165 

Wigington et al. (2013) developed their HL classification based on climatic and physical characteristics of the physical 166 

watershed. They defined five indices to characterize the major drivers that control the magnitude and timing of water 167 

movement through the landscape and into the ground or stream network: (1) climate, which describes the overall 168 

availability of water on the landscape, (2) seasonality of water surplus, which is the season when the maximum excess 169 

of water is available to infiltrate into the soil column or flow as surficial runoff, (3) subsurface permeability, (4) terrain, 170 
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and (5) surface permeability. Note that Wigington et al. (2013) referred to subsurface and surface permeability as 171 

aquifer and soil permeability, respectively. The five HL indices, described in more detail below (Sections 2.2.1 through 172 

2.2.5), are typically concatenated into a 5-character HL code (e.g., WsLMH, SwHTH, or DfHfL) that characterizes an 173 

AU. 174 

Leibowitz et al. (2016) developed an HL map of the Pacific Northwest (PNW, consisting of Oregon, Idaho, and 175 

Washington) based on a modification of the Wigington et al. (2013) approach (herein described as the modified 176 

Wigington et al. (2013) approach). For the current effort, we used the modified Wigington et al. (2013) approach to 177 

develop an HL classification of California, Nevada, and Arizona [referred to as the southwest]. This was then 178 

combined with the PNW map (Leibowitz et al., 2016) to create an HL map of the six western states.  179 

2.2.1 Climate 180 

The Wigington et al. (2013) approach derived the climate index from the FMI (Feddema, 2005): 181 

𝐹𝐹𝐹𝐹𝐹𝐹 =  �
1 − 𝑃𝑃𝑃𝑃𝑃𝑃

𝑃𝑃
    𝑖𝑖𝑖𝑖 𝑃𝑃 ≥ 𝑃𝑃𝑃𝑃𝑃𝑃

𝑃𝑃
𝑃𝑃𝑃𝑃𝑃𝑃

− 1    𝑖𝑖𝑖𝑖 𝑃𝑃 < 𝑃𝑃𝑃𝑃𝑃𝑃
    (1) 182 

where FMI (Eq. (1)) values range from -1.0 (arid) to 1.0 (very wet). P is the mean precipitation (mm) over a 30-year 183 

normal, which is derived from climate data described in Section 2.3, and PET is the potential evapotranspiration (mm) 184 

calculated using the Hamon (1961) method, that utilizes mean daily temperature, daytime length (calculated based on 185 

latitude), and a calibration coefficient. The range of FMI values was the basis for a climate index consisting of six 186 

classes: arid (A; -1.0 ≤ FMI < -0.66), semiarid (S; -0.66 ≤ FMI < -0.33), dry (D; -0.33 ≤ FMI < 0.0), moist (M; 0.0 ≤ 187 

FMI < 0.33), wet (W; 0.33 ≤ FMI < 0.66), and very wet (V; 0.66 ≤ FMI < 1.0) (Wigington et al., 2013). FMI was 188 

calculated from regional precipitation rasters (described in Section 2.3) for each period of interest. The FMI value was 189 

then averaged over each AU. 190 

2.2.2 Seasonality 191 

We used the Leibowitz et al. (2016) approach to develop a seasonality index that identifies the season of the maximum 192 

monthly average snowpack-corrected surplus water (S’m):  193 

𝑆𝑆𝑚𝑚′ = 𝑆𝑆𝑚𝑚 −  𝛥𝛥𝑃𝑃𝛥𝛥𝛥𝛥𝛥𝛥𝑚𝑚∗                                                  194 

  = (𝑃𝑃𝑚𝑚 −  𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚) −  (𝑃𝑃𝛥𝛥𝛥𝛥𝛥𝛥𝑚𝑚∗ − 𝑃𝑃𝛥𝛥𝛥𝛥𝛥𝛥𝑚𝑚−1
∗ )  (2) 195 

where S’m (Eq. (2)) is the average snowpack-corrected water surplus (mm) for month m, Sm is monthly water surplus 196 

(P - PET), and Pm and PETm are monthly precipitation and monthly PET, respectively. PACKm
* is a monthly bias-197 

corrected snowpack value (in mm of snow water equivalent, or SWE) restricted to values greater than zero, based on 198 

the Leibowitz et al. (2016) modifications to the Leibowitz et al. (2012) snowpack model. Note, however, that 199 

𝛥𝛥𝑃𝑃𝛥𝛥𝛥𝛥𝛥𝛥𝑚𝑚∗ can have negative values, which represents snow melt. For each month, S’m was calculated for the regional 200 

raster, before identifying the month of maximum S’m for the majority of pixels in each AU. The month of maximum 201 

S’m was used to identify the season of maximum S’m based upon four seasonality classes: fall (f; October–December), 202 

winter (w; January–March), spring (s; April–June), and summer (u; July–September). The PNW analysis by 203 

Leibowitz et al. (2016) only included two seasonality classes; summer seasonality did not occur, while fall and winter 204 

were combined into a winter class, since this represented the PNW’s wet season.  For our analysis, we kept winter and 205 
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fall separate and used all four seasonality classes, because fall and winter are distinct seasons in other parts of the 206 

nation. 207 

2.2.3 Subsurface permeability 208 

Leibowitz et al. (2016) utilized the Comeleo (2014) aquifer permeability dataset.  We applied a similar approach from 209 

the Stratton et al. (2016) aquifer permeability datasets, which is herein referred to as subsurface permeability. Each of 210 

these datasets classify the subsurface permeability into high (H) and low permeability (L) classes, which are assigned 211 

with a threshold guideline of 8.5 x 10-2 m day-1 hydraulic conductivity. Using these data, we analyzed the subsurface 212 

permeability of each AU by identifying the subsurface permeability class for the majority of pixels within each AU in 213 

the three south western states.  214 

2.2.4 Terrain 215 

To classify terrain, we used the same approach as Wigington et al. (2013). We analyzed a 30 m Digital Elevation 216 

Model to classify the landscape based upon the topographic characteristics of each AU. “Mountainous” (M) areas had 217 

AUs with <10 % of the area identified as flat (< 1 % slope) and greater than 300 m of total relief. AUs with more than 218 

50 % area having < 1 % slope were classified as “flat” (F).  All other AUs were identified as “transitional” (T). 219 

2.2.5 Surface permeability 220 

For surface permeability, the Wigington et al. (2013) HL approach utilized the STATSGO soil permeability raster 221 

developed by Pennsylvania State University Center for Environmental Informatics (www.cei.psu.edu) for the top 10 222 

cm of soil (Miller and White, 1998) in the conterminous U.S. The STATSGO soils database was selected because of 223 

its complete coverage of the conterminous U.S., despite SSURGO’s higher spatial resolution, which did not have 224 

complete spatial coverage of the U.S. They identified whether the majority of each AU had high (H; >1.52 cm/hr) or 225 

low (L; ≤ 1.52 cm h-1) soil permeability. We applied the same approach to classify surface permeability of each AU 226 

into two classes throughout the region. 227 

2.3 Climate analyses 228 

2.3.1 Modern climate normal (1971–2000) 229 

Average monthly precipitation and mean temperature were acquired from Parameter-elevation Regressions on 230 

Independent Slopes Model (PRISM; Daly, 2016b) data for our normal climatic period at a resolution of approximately 231 

400 m. The PRISM Climate Mapping Program is an ongoing effort to produce detailed, spatial climate datasets (Daly, 232 

2016a; Daly et al., 2000). PRISM uses point measurements of climate data and a digital elevation model to map 233 

climate across the U.S. from 1895–present, including regions impacted by high mountains, rain shadows, temperature 234 

inversions, coastal regions, and associated complex meso-scale climate processes. Using ArcGIS (ESRI, 2016), the 235 

data were clipped to the project boundary and used to calculate the average  for our seven metrics (monthly 236 

temperature, precipitation, PET,  surplus water, snow water equivalent, FMI, climate index, and seasonality of water 237 

surplus) for the normal period. Each of these metrics are inputs to or products of the HL classification process. 238 

2.3.2 Historical climate analyses (1901–2010) 239 

Unlike with monthly precipitation and temperature data, a time series of gridded daily historical climate data at a 240 

spatial resolution of 400 m was not available. Daily PRISM data is freely available at 4 km resolution, and this was 241 

what we used to develop the historical climate analyses for the 1901–2010 period. Gridded data for daily mean 242 
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temperature and precipitation were clipped to the project boundary and averaged for each month over each decade 243 

(i.e., 1901–1910, 1911–1920, etc.). The data were then statistically downscaled to 400 m using the delta method 244 

(Hijmans et al., 2005; Ramirez-Villegas and Jarvis, 2010) to match the spatial resolution of the modern climate normal 245 

data (using the 400 m resolution, monthly PRISM climate normal for 1971–2000 period as the high resolution dataset).  246 

We acknowledge the inaccuracies and uncertainty imposed in the temperature and precipitation datasets by applying 247 

the downscaling functions to the original climate projections, however since these 400 m resolution monthly averages 248 

are normally distributed (Trzaska and Schnarr, 2014) and the data are to be aggregated to our 80 km2 (on average) 249 

AUs, the trade-offs were deemed acceptable and preferable for characterizing the hydrology and climate for these 250 

analyses. 251 

Using the approaches described herein, the downscaled data were used to calculate the average monthly PET, surplus 252 

water, snow water equivalent, FMI, and seasonality of water surplus for each decade. Summary figures were generated 253 

from this data depicting spatial distribution of climate and seasonality for each decade across the project area. These 254 

data were compared to the modern climate normals using spatially continuous time series analyses. 255 

 2.3.3 Future climate analyses (2041–2070) 256 

In order to explore the potential range of modeled climatic response for the study area, we selected ten climate model 257 

projections from the full ensemble of World Climate Research Programme’s Coupled Model Intercomparison Project 258 

phase 5 multi-model ensemble climate dataset projections (WCRP CMIP5; http://cmip-pcmdi.llnl.gov/cmip5; Taylor 259 

et al., 2012). These models are based on the Representative Concentration Pathway (RCP) 8.5 emissions scenario, 260 

which assumes the highest rate of emissions into the 21st century. We only used this emissions scenario to reduce the 261 

complexity of the analyses. To select the specific model simulations to use in this study, we created a scatterplot 262 

comparing future temperature and precipitation change for the different CMIP5 models over the project area.  We 263 

selected ten models that spanned the range of predicted climatic responses of the full ensemble (Fig. 2), including 264 

drier, wetter, colder, and warmer responses. Average monthly precipitation and temperature for the ten projections 265 

(Table 1) were acquired from the monthly Bias-Correction and Spatial Disaggregation (BCSD) archive (Bureau of 266 

Reclamation, 2014) for the 2041–2070 period. These data were clipped to the project boundary and resampled to a 267 

400 m grid using a bilinear approach (ESRI ArcGIS v10.4) to match the resolution and spatial extent of the modern 268 

climate normal data. The average monthly PET, surplus water, snow water equivalent, FMI, and seasonality of water 269 

surplus were calculated from the future climate data for each assessment unit. Summary figures were generated that 270 

illustrate the spatial distribution of climate and seasonality for each climate projection. The differences in FMI and 271 

seasonality of water surplus from the normal period were also mapped and compared. 272 

2.4 Mapping vulnerability indices 273 

As discussed in the introduction (Section 1), vulnerability can be measured by assessing the exposure, sensitivity, and 274 

adaptive capacity of a system to change (Adger, 2006; Füssel, 2007; Füssel and Klein, 2006; IPCC, 2014). Historic 275 

hydrology and climate are primary drivers for ecosystem change (Nelson, 2005), and are critical to certain industries 276 

and stakeholders in particular areas; thus historic hydrology and climate serve as proxies for the sensitivity of those 277 

systems to environmental change. In the assessment of hydrologic vulnerability, we evaluated the variability in 278 

historical climate data and our derived hydrologic metrics as a proxy for sensitivity. Likewise, we used future climate 279 
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projections as a proxy for exposure to environmental change. Projections that fell outside of historic observations 280 

should then be associated with increased levels of exposure. In terms of adaptive capacity, we assumed that the systems 281 

present in a location are adapted to the historic observed variability in conditions. We also assumed that the systems 282 

would become stressed by conditions far outside of those previously experienced. Further, we suggest that the larger 283 

the number of future climate projections that exceed or fall far below their historic range, the more vulnerable a system 284 

associated with a particular climate will be with respect to climate-induced changes. Our hydrologic landscape 285 

vulnerability analysis (HLVA) places modern and projected environmental changes in the context of available historic 286 

data. The HLVA assesses vulnerability to changes in temperature, precipitation, potential evapotranspiration, snow 287 

accumulation, climatic moisture, surplus water, and seasonality of the water surplus by identifying areas that are 288 

projected to experience deviations from historic conditions. 289 

The ten future climate projections (for the 2041–2070 period) were compared to the decadal averaged data from 1901–290 

2010 for each AU. We calculated the historical standard deviation of each metric for each AU within the project area.  291 

For each metric, we assume that any projection that is within two-standard deviations of the historical climate values 292 

does not contribute to an increase in vulnerability, whereas projections outside of that range increase the vulnerability. 293 

We then define vulnerability for a given index as the number of the ten projections that are outside of the historical 294 

two-standard deviation threshold. Thus, the HLVA index assesses the likelihood that a given metric will exceed a two-295 

standard deviation threshold from the decadal mean under future climate scenarios.  A vulnerability index of ten 296 

indicates that all ten climate projections were beyond two-standard deviations from the historical mean and so are 297 

expected to experience projected conditions that they are not adapted to. The least vulnerable areas will have an index 298 

of zero, which indicates that all future climate projections fell within the two-standard deviation threshold to which 299 

systems are adapted to. The use of standard deviations is not an appropriate threshold metric for seasonality, because 300 

it is a categorical variable. For the seasonality metric, any projected seasonality value that has not been observed 301 

decadally between 1900 and 2010 increases the seasonality vulnerability index. For example, consider an AU that had 302 

predominantly experienced Spring seasonality, with the occasional Fall seasonality and that 7 of 10 climate models 303 

project Fall seasonality and 3 of 10 models predict Winter seasonality for 2041–2070. Since Winter seasonality was 304 

not observed for any decade between 1900 and 2010, the three predictions for Winter seasonality each contribute to 305 

the vulnerability index for seasonality. Finally, we analyzed the dominant HL code by area of the most vulnerable 306 

AUs (those having a vulnerability index greater than seven on a scale of ten) for each metric in order to gain insight 307 

about the dominant HL characteristics that relate to hydrologic vulnerability.  308 

2.5 Locational time series analyses 309 

Forty-five locations (Fig. 1 and Table 2) were selected for potential applications of the HL approach, based in part to 310 

demonstrate the method’s relevance to potential water resource stakeholders to identify areas where we thought results 311 

could be of use to land managers. The time series for the decadal averages for each of the seven HL metrics were 312 

analyzed for the AUs associated with each of these locations. Decadal averages were plotted at the decadal midpoint 313 

for each 10-year period from 1901 to 2010. In addition, the 1971–2000 normal average for each variable and ten 314 

climate projections (2041–2070) were plotted in a similar manner. The HLVA was then used to determine the mean 315 

vulnerability index and the dominant HL code for the AUs associated with each location. 316 

https://doi.org/10.5194/hess-2019-638
Preprint. Discussion started: 23 January 2020
c© Author(s) 2020. CC BY 4.0 License.



10/49 
 

3 Results 317 

3.1 Hydrologic landscape summary 318 

Table 3 shows the percent coverage of the HL categories for the six states. Thirty percent of the region is mountainous 319 

(elevation relief of AU > 300 m and < 10 % of AU area has slope < 1 %) and 7 % is flat (AUs with more than 50 % 320 

area having < 1 % slope). The remaining area is classified as transitional. According to the soil permeability dataset 321 

(Miller and White, 1998) produced from the STATSGO soils database (Soil Survey Staff, 2016), 98 % of the surface 322 

soils (defined as the top 10 cm) are highly permeable (> 4.23 µm s-1). Stratton et al. (2016) and Comeleo et al. (2014) 323 

classified the subsurface permeability of the six-state region as 60 % high permeability and 40 % low permeability. 324 

In terms of the 1971–2000 climate normal period, most of the area has the highest monthly water availability 325 

(seasonality) during the winter (63 %), fall (24 %), spring (13 %), with approximately 1 % experiencing summer 326 

seasonality. In addition, 30 % of the area is classified as having a moist, wet, or very wet climate, while 70 % is dry, 327 

semi-arid or arid. The HL maps for the study area (Washington, Oregon, Idaho, California, Nevada, and Arizona) are 328 

included in the appendix (Fig. A1). HL maps for the remainder of the conterminous US are also available and are also 329 

included as supplemental material (Fig. S1). Note that the subsurface permeability maps were not extended across the 330 

lower 48 states prior to submission but are available as supplemental material. 331 

3.2 Climate analyses 332 

3.2.1 Regional (spatially continuous) time series analyses 333 

Figure 3 contains spatial trends in the change in FMI for the western U.S., showing wetter or drier decades relative to 334 

the 1971–2000 baseline period (Figure S2 in the supplemental material illustrates similar data for the continental US). 335 

Figure 4 displays projections of future (2041–2070) FMI values for the western U.S. relative to the 1971-2000 normal 336 

period, based on the ten climate projections (Figure S3 in the supplemental material illustrates similar data for the 337 

continental US).  Three of the climate models (CCSM-R4, MRI-CGCM3, and CESM1) indicate that portions of the 338 

western U.S. may be wetter (as indicated by the blue areas in Fig. 4), while other areas will be drier (red) than or 339 

similar to the 1971–2000 normal. Similarly, the maps suggest that seven of the climate models (CCSM4, GFDL, 340 

inmcm4, CanESM2, HadGEM, CSIRO, and MIROC) project that much of the western U.S. will be considerably drier 341 

than the normal period. The remaining models indicate that some areas will be slightly drier, whereas much of the 342 

area will be similar to the 1971–2000 normal condition.  343 

Figure 5 illustrates where the seasonal classes of surplus water have varied between 1901 and 2010 relative to the 344 

1971–2000 base period (Figure S4 in the supplemental material illustrates similar data for the continental US). Most 345 

areas throughout this historical period show little variation in the season of maximum available water (i.e., are shown 346 

in white), but there are patterns in the water surplus seasonality that can be observed in the West. The 1940s, 1960s, 347 

1980s, and 2000s seem to show later seasonality in southern Oregon and Idaho and Northern California and Nevada. 348 

In contrast, portions of Oregon, Washington, and Arizona are shown to have earlier seasonality in the 1900s, 1910s, 349 

1930s, 1950s, and 1970s.  350 

Figure 6 illustrates the seasonal changes in surplus water as projected by the ten climate models for 2041–2070 351 

compared to 1971–2000 (Figure S5 in the supplemental material illustrates similar data for the continental US). In 352 

general, most of the climate models predict earlier surplus water in many of mountainous areas in the six western 353 
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states. Although most mountainous areas in Nevada are projected to have little change in seasonality, those that are 354 

projected to change are projected to have earlier seasonality. In Arizona, the White Mountains are predicted to have a 355 

later seasonality in two of ten climate projections (MIROC and GFDL), whereas seven projections predict earlier 356 

seasonality in western Arizona.  357 

 358 

3.2.2 Vulnerability analyses 359 

The vulnerability maps (Fig. 7) identify areas that are more or less subject to extreme future climatic and hydrologic 360 

variability (Similar vulnerability maps for the continental US are included in the supplemental materials (Fig. S6)). 361 

All climate projections indicate that temperature will change almost ubiquitously across the Pacific west, however 362 

changes in precipitation are much more spatially variable. The cold deserts and Mediterranean California Ecoregions 363 

(Level 2) are more consistently projected to experience changes in precipitation than has been observed since 1901 on 364 

a decadal basis. In contrast, major portions of Arizona, Washington, Oregon, and California have areas with low 365 

vulnerability to change with respect to precipitation.  The Hamon (1961) method of calculating monthly PET uses 366 

temperature as the major input, so it is not surprising that the PET vulnerability map is similar to the temperature 367 

vulnerability map. The April 1 snow accumulation (snow water equivalent) vulnerability map seems to indicate that 368 

snow accumulation will change in many mountainous areas throughout the west, but particularly in the transitional 369 

areas when compared to the most snow prone areas of the West. S’ is a measure of available water (excess water 370 

available for soil infiltration or overland flow). The map for S’ suggests that the Warm Desert and Marine West Coast 371 

Forest Ecoregions are more likely to experience substantial changes in available water (i.e., high vulnerability) in the 372 

future. The FMI is calculated from the ratio of PET and precipitation per Eq. (1). The FMI vulnerability map indicates 373 

that the Cold Desert Ecoregions of central, Western Washington, the Warm Deserts of Southern California, and High 374 

Elevation Sierra Madre Mountains of south eastern Arizona are more likely to see substantial changes to the FMI. The 375 

regional time series analyses (below) provide more information about whether those areas are expected to become 376 

wetter or drier. The seasonality vulnerability map identifies AUs that are likely to have changes in seasonality. Portions 377 

of the Sierra-Nevada Mountains in California and the Cascades in Oregon, and mountainous areas in Idaho are 378 

projected to be more vulnerable to changes in seasonality.  All other areas are not projected to be vulnerable to changes 379 

for seasonality.  380 

3.2.3 Study area as a hydrologic landscape 381 

Table 4 summarizes an analysis of the HL classifications of the most vulnerable AUs for each metric. For example, 382 

75 % of the AUs identified as vulnerable for snow accumulation were classified as dry, moist, or wet, therefore very 383 

wet, semi-arid, and arid AUs are less likely to be vulnerable to changes in snow accumulation. Likewise, 76 % of AUs 384 

vulnerable to changes in seasonality had a spring seasonality during the 1971–2000 normal period.  The physical 385 

properties represented by the dominant HL classes in Table 4 could help determine how various climate vulnerabilities 386 

are ultimately expressed.  For example, vulnerability to changes in snow or FMI mostly occur in regions with wetter 387 

climates (Moist, Wet, or Very Wet climate), with fall or spring Seasonality, in areas with low subsurface permeability.  388 

This could result in increased precipitation, with quicker runoff in areas that currently have delayed release of water. 389 

Similarly, areas vulnerable to changes in surface runoff are arid landscapes with winter seasonality and highly 390 
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permeable subsurface parent materials. This means that these changes in runoff could have a large impact on 391 

subsurface recharge and, ultimately, baseflow. 392 

3.2.4 Locational time series 393 

Historic and future changes in ecologically relevant variables are shown for three example locations (Napa-Sonoma 394 

Valley, Willamette Valley, Mt. Hood; Fig. 8). Similar analyses have been performed for areas of ecological, economic, 395 

or social significance (Table 2; see Appendix A (Fig. A2)). The number in the lower left corner of each graph in Fig. 396 

8 indicates the vulnerability index for the specific metric and location. The vulnerability index for each location is 397 

also listed in Table 2 for each metric. For instance, precipitation at Mt. Hood has a vulnerability index of ‘3’, which 398 

indicates that three of the climate projections exceed the threshold of two-standard deviations from the historic mean. 399 

Table 2 indicates that 81 % of the 834 km2 area analyzed for Mt. Hood (Site #7) had an HL code of VsHMH, (very 400 

wet climate with spring seasonality, high subsurface permeability, mountainous terrain, and high surface 401 

permeability). During the normal period, sixty-one percent of the 1867 km2 Napa-Sonoma Valley (Site #26) had an 402 

MwHMH HL classification, thus much of the area was classified as having a moist climate with winter seasonality, 403 

high subsurface permeability, mountain terrain, and high surface permeability. Eighty-three percent of the 1234 km2 404 

Willamette Valley AUs (Site #8) had an HL code of WfHTH during the normal period. Overall, the Willamette Valley 405 

had a wet climate, dominated by fall seasonality, high subsurface permeability, transitional terrain, and high surface 406 

permeability. 407 

The time series in Fig. 8 (and Fig. A2) illustrate the trend in average decadal temperature, precipitation, SWE, PET, 408 

S’, climate, and seasonality of water surplus. Note that each future (2041–2070) climate projection represents a single 409 

data point that represents the 2041 – 2070 30-year range and is connected to the 2001–2010 decade with a dotted red 410 

line. Additional figures for 41 other locations are provided in Appendix A (Fig. A2). Each of the three example areas 411 

is predicted to be warmer in the 2041–2070 future climate projections. Further, these projected temperatures are almost 412 

always outside of the historic (1901–2010) temperature range, and so all locations have high vulnerability with respect 413 

to future temperatures. None of the three examples show a strong trend relating to future precipitation projections. Mt. 414 

Hood appears to show increasing precipitation since 1901, but there is no evidence that the projected increases in 415 

precipitation are outside of historic behavior. Napa-Sonoma and the Willamette Valley have low vulnerability for 416 

change in snow, while Mt. Hood has high vulnerability for less April 1 snow accumulation in the 2041–2070 period. 417 

PET is calculated directly from temperature and therefore shows trends strongly correlated to temperature. There are 418 

no obvious trends in S’ for the future projections for the selected examples; vulnerability of these sites for S’ is low 419 

to moderate. The FMI projections for Napa-Sonoma Valley, the Willamette Valley and Mt. Hood are outside of two-420 

standard deviations of historical trends in three to four out of ten of the projections (Table 2). In terms of seasonality, 421 

the vulnerability index is equal to zero in the Willamette and Napa-Sonoma Valleys. For Mt. Hood, vulnerability is 422 

low, with all of the future climate projections indicating that there will no longer be spring seasonality (the 423 

predominant historical season for runoff), but only 3 projections suggest that seasonality would transition to a winter 424 

seasonality that is not modeled to have occurred since at least 1900 on a decadal scale. 425 
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4 Discussion 426 

Vulnerability maps (Fig. 7) were developed that indicate what areas across the landscape are projected to experience 427 

conditions that exceed two-standard deviations of the historic decadal average conditions. These maps provide 428 

spatially explicit details about the areas of the landscape that are most likely to experience conditions outside of those 429 

observed previously for seven different climate indicators. These maps were developed to facilitate long-term planning 430 

for stakeholders to be able to assess their risk to climatic impacts. It is possible that ecosystems, businesses, and 431 

communities in areas mapped as vulnerable may not be able to adapt to the stresses imposed by future environmental 432 

conditions.  433 

From the vulnerability maps (Fig. 7), it is apparent that temperature [similar to Nijssen et al. (2001)] and PET are 434 

consistently projected to exceed the two-standard deviation threshold of historic conditions for most regions, though 435 

changes in PET may be overestimated (Johnson et al., 2012; U.S. Environmental Protection Agency, 2013). 436 

Precipitation vulnerability maps are not as spatially uniform as temperature. The vulnerability maps for snow 437 

accumulation and S’ (surplus water available for runoff or infiltration) show that the areas mapped as most vulnerable 438 

for the two metrics are almost reversed, other than central Idaho and the coastal areas of California, Oregon, and 439 

Washington. According to the snow vulnerability map, it appears that most areas that receive much snow are projected 440 

to experience significant changes in future snow accumulation. In a related study on snow cover, Nolin and Daly 441 

(2006) found that the areas with the warmest winter temperatures are most at risk of having no snow cover in the 442 

future. Regarding the Feddema Moisture Index, Fig. 7 suggests that most of the models indicate that the magnitude of 443 

the FMI change is mostly within two-standard deviations of normal. The seasonality vulnerability map (Fig. 7) shows 444 

that the high Sierra-Nevada mountains in California, the Cascade mountains, and the mountainous areas in Idaho are 445 

somewhat prone to changes in seasonality.  446 

We used a retrospective analysis of PRISM climatic time series data to gain an understanding of the distribution of 447 

environmental conditions present since 1901. While others have mapped resource and hydrologic vulnerability (Hill 448 

et al., 2014; Nolin and Daly, 2006; Vorosmarty et al., 2000; Winter, 2000), we are aware of few that have used 449 

retrospective analyses to inform the mapping efforts (Deviney et al., 2006; Kim et al., 2011; O’Brien et al., 2004) and 450 

are not aware of studies that have mapped resource vulnerability at a large scale using these types of data. It is 451 

important to emphasize that our definition of vulnerability is based on agreement of models with respect to climate 452 

conditions that are outside of historic ranges. The inference is that systems dependent on historic climate conditions 453 

may not be adapted to future conditions, and so are vulnerable. It is possible that they have the adaptive capacity to 454 

maintain their ecological and economic systems, but this is not a certainty.  The vulnerability maps do not show, 455 

however, watersheds or communities downstream of these source areas that would be impacted by these changes.   456 

For this analysis, the 30-year normal climate conditions are compared to decadal (10-year) climate conditions since 457 

1901. In addition, the 30-year normal for future projections (2041-2070) is compared to the historic range of decadal 458 

climate data. While this may appear to be a discrepancy in the analysis, it was included intentionally to represent a 459 

conservative approach to quantifying vulnerability indices. Normal conditions are averaged over a 30-year period and 460 

therefore exhibit less variability than decadal averages or annual averages.  By examining the past variability of the 461 

decadal averages since 1901, we use a period that exhibits variability without being an entirely smooth dataset. We 462 
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then compare that to the 30-year future climate normal, which inherently has much less variability. By using this 463 

approach, we recognize that we are not treating past data in the same manner as we treat future climate projections. 464 

We suggest that the resulting vulnerability conclusions are conservative, because if we had used decadal projections 465 

for future climate data, the range of output would have been more variable. Decadal data would potentially have 466 

increased our vulnerability indices for all parameters except those that are already at the maximum but should not 467 

have decreased the index in any case. 468 

In Fig. 8, examples are provided (Napa-Sonoma Valley, Willamette Valley, and Mt. Hood) to illustrate how analyses, 469 

like the HLVA approach, can assist natural resource managers, business owners, or other stakeholders to understand 470 

the potential impacts that changes in climate may have on their environment and the local bottom line. It is necessary 471 

for a stakeholder to have an idea of the parameters most important to their ecosystem, industry, or resource of interest, 472 

and it should prove useful for land and resource managers that are seeking location specific information about potential 473 

climatic impacts (Glick et al., 2011; Lawler et al., 2010). 474 

Important stakeholders in the western U.S. that may be expected to experience impacts from hydrological changes 475 

associated with climate include the wine and skiing industries. The Napa-Sonoma and Willamette Valleys are 476 

economically important for their grape vineyards and associated wineries. The Willamette Valley is recognized for 477 

the quality of its pinot noir varietals (http://wine.appellationamerica.com/wine-region/Willamette-Valley.html), which 478 

require narrower temperature ranges than other grape cultivars (Burakowski and Magnusson, 2012; Jones et al., 2010). 479 

Due to the importance of the pinot noir varietal to viticulturists in the Willamette Valley, they are likely more 480 

concerned with changes in temperature than FMI. The Napa-Sonoma region is recognized for a wider variety of grape 481 

cultivars (http://wine.appellationamerica.com/wine-region/Napa-Valley.html, Elliott-Fisk, 1993) that have higher 482 

tolerance for temperature fluctuations than the pinot noir varietals commonly grown in the Willamette Valley (Jones 483 

et al., 2010). Figure 8 indicates that both the Willamette Valley and Napa-Sonoma have temperature vulnerability 484 

indices of ten out of ten, and both have FMI vulnerability indices of three out of ten. These index values suggest that 485 

both locations are projected to have future temperatures that are significantly different than the historic observed 486 

temperatures. However, the Willamette Valley pinot noir vineyards may have more cause for concern, since pinot noir 487 

grapes are documented to be more sensitive to temperature. In the Napa and Sonoma Valleys, there may be less need 488 

for concern with temperature than in the Willamette Valley. In addition, while both locations have the same FMI 489 

vulnerability indices, Fig. 8 illustrates that FMI projections for Napa-Sonoma are much more variable than for the 490 

Willamette Valley. Thus, there is more uncertainty in the modeled water availability for Napa-Sonoma. Taken at face 491 

value, these modeled results suggest that a vintner growing warm temperature grape species in the Willamette Valley 492 

may have more confidence in his investments relative to a vintner in Napa-Sonoma, where there is more uncertainty 493 

regarding long-term water availability.   494 

The skiing industry is also an important economic contributor. According to Burakowski and Magnusson (2012), the 495 

difference in economic impact between a high and low snowfall year for the State of Oregon is $38.1 million, while 496 

California is estimated to lose more than $75 million in low snow years. Mt. Hood is well known for its recreational 497 

snow sports and winter tourism in Oregon and would be impacted differently by the seven metrics than the Willamette 498 

and Napa-Sonoma examples (Fig. 8). Thus, resource managers and business leaders at Mt. Hood are likely more 499 
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concerned about snow accumulation in their watershed than those in the wine and grape industries (although grape 500 

grower’s ability to irrigate may be impacted by snow accumulation in the region). According to our analyses, Mt. 501 

Hood has a snow vulnerability index of seven out of a maximum of ten. The analysis of seasonality suggests some 502 

chance of a shorter ski season due to the spring runoff occurring earlier during the winter season. Even though these 503 

conditions have occurred in the past (Fig. 8), this may be much more deleterious to the economics of the modern or 504 

future ski industry than it was in the 1900s, because it contributed much less to the historic economy. 505 

The quantity (as indicated by the FMI) and timing (as indicated by the seasonality of the water surplus) of moisture 506 

availability only account for a portion of the water balance for an area. The FMI and seasonality are assumed to be 507 

proxies for the quantity and timing of moisture availability, but when moisture is available as surface runoff, it may 508 

then infiltrate into the ground or act as surface runoff. Water may infiltrate the surface layer of soil (depending on the 509 

soil permeability) and may enter the subsurface layers (depending on the vertical conductivity of the subsurface 510 

layers). The velocity of water through the subsurface layers that flows towards a stream channel depend upon the 511 

horizontal conductivity of the subsurface layers. Thus, if the water was retained as surface or subsurface runoff, it may 512 

be transported more quickly in the downhill direction and into a stream channel depending upon the steepness of the 513 

terrain (included in the HL classification). As it relates to streamflow, the unique combination of the five HL 514 

characteristics (climate, seasonality, surface permeability, subsurface permeability, and terrain) allows for the 515 

estimation of catchment hydrologic responses to changes in temperature and climate (Leibowitz et al., 2014; Patil et 516 

al., 2014). The HL approach has proved useful for streamflow prediction in gaged basins for some HL classes and 517 

should be useful in many ungaged basins as well. However, this paper illustrates how the HL approach can help to 518 

assess climatic and hydrologic vulnerability across large spatial scales. The three examples we provided, show how 519 

the HLVA method could be useful to resource managers for considering how future climate conditions may impact 520 

important economic and conservation resources (for additional examples refer to the appendix (2).  521 

5 Summary and conclusions 522 

The hydrologic landscapes (HL) concept has proved useful for gaining a better understanding of hydrologic behaviour 523 

at the assessment unit and watershed scales across large geographic regions. By applying the HL concept to climatic 524 

and vulnerability analyses, we provide a planning approach that allows resource managers to consider historic and 525 

projected climate behavior in their long-term planning efforts so they can better assess the risk imposed by potential 526 

changes.  The methodology also allows stakeholders to focus on particular areas of interest, which provides the 527 

flexibility necessary for the information to be relevant across applications and sectors. By applying the modified 528 

Wigington et al. (2013) HL approach across the western US, resource managers will gain a better understanding of 529 

the projected vulnerability of water resource availability in a large portion of the United States. 530 

6 Data availability 531 

The geospatial data files (Jones et al., 2020) will be uploaded to the GeoPlatform (https://www.geoplatform.gov) and 532 

EPA Environmental Dataset Gateway (https://edg.epa.gov). Data cannot be made publicly available and the DOI link 533 

cannot go activated until the paper is published per internal US EPA policy. 534 
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12 Figures 746 

 747 
Figure 1. Study area showing map with the six states of WA, OR, ID, CA, NV, and AZ. Also shown are the 7 EPA Level II 748 
Ecoregions and 45 locations identified by numbered circles with three example locations in black circles (Table 2). 749 
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750 
Figure 2. Scatterplot showing the range of mean temperature and precipitation projections for the 2041–2070 climate 751 
models across the study area. The circled data points identify the climate projections used in our analyses. 752 
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 753 

Figure 3. Decadal change in Feddema Moisture Index relative to 1971–2000 normal period. Red and blue colors indicate 754 
drier and wetter average conditions than 1971–2000, respectively. 755 
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 756 

Figure 4. Projected change in Feddema Moisture Index for 2041–2070 relative to 1971–2000 for ten climate models (Table 757 
1). Red and blue colors indicate drier and wetter conditions than the 1971–2000 base period, respectively. Abbreviated 758 
model names correlate to those in Table 1. 759 
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 760 

Figure 5. Decadal change in seasonality of water surplus since 1901 relative to 1971–2000. Red and blue colors indicate 761 
earlier and later seasonality than the 1971–2000 base period, respectively. 762 
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 763 

Figure 6. Projected change in seasonality of water surplus for 2041–2070 relative to 1971–2000 for ten climate models. Red 764 
and blue colors indicate earlier and later seasonality than the 1971–2000 base period, respectively. Abbreviated model 765 
names correlate to those in Table 1.766 

https://doi.org/10.5194/hess-2019-638
Preprint. Discussion started: 23 January 2020
c© Author(s) 2020. CC BY 4.0 License.



29/49 
 

 767 

Figure 7. Vulnerability indices for temperature, precipitation, potential evapotranspiration, snow water equivalent (April 768 
1), S’ (available water), Feddema Moisture Index, and seasonality. The least vulnerable locations are those projected to be 769 
within two-standard deviations of the historic (1901–2010) mean in all nine climate models.   770 
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 771 

Figure 8. Time series of average decadal temperature, precipitation, snow (April 1 snow water equivalent (mm)), potential 772 
evapotranspiration (PET), available water (S'), FMI, and seasonality for three specific locations in the western U.S. Dotted 773 
black line represents the 1971–2000 base period; the dashed red line connects the 2001–2010 value to the 2041–2070 774 
climate projections. The number in lower left indicates the vulnerability index for the metric and location depicted in the 775 
associated graph.   776 
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13 Tables 777 

Table 1. CMIP5 Climate model summary for 2041–2070 precipitation and temperature data (Bureau of Reclamation, 778 
2014). 779 

WCRP CMIP5 Climate Model 

Model 
abbreviated 

name 
Model 

realization  
used herein 

Abbreviated name 
used in this paper 

for realization 
Canadian Earth System Model  CanESM2 r5i1p1 CanESM2 

Community Climate System Model  CCSM4 r1i1p1 CCSM4 

Community Climate System Model CCSM4 r4i1p1 CCSM4-R4 

Community Earth System Model  CESM1 r3i1p1 CESM1 

Commonwealth Scientific and 
Industrial Research Organisation 
Mark 3.6  

CSIRO-Mk3-
6-0 

r5i1p1 CSIRO 

Geophysical Fluid Dynamics 
Laboratory Coupled Climate Model  

GFDL-CM3 r1i1p1 GFDL 

Hadley Global Environment Model  HadGEM2-AO r1i1p1 HadGem 

Institute for Numerical Mathematics 
Climate Model  

INM-CM4 r1i1p1 inmcm4 

Model for Interdisciplinary Research 
on Climate  

MIROC-ESM r1i1p1 MIROC 

Meteorological Research Institute  MRI-CGCM3 r1i1p1 MRI-CGCM3 

780 

https://doi.org/10.5194/hess-2019-638
Preprint. Discussion started: 23 January 2020
c© Author(s) 2020. CC BY 4.0 License.



32
/4

9 
 T

ab
le

 2
. S

um
m

ar
y 

ta
bl

e 
fo

r 
45

 s
tu

dy
 lo

ca
tio

ns
 (

so
rt

ed
 b

y 
de

cr
ea

si
ng

 la
tit

ud
e)

 p
ro

vi
de

s 
nu

m
er

ic
 I

D
 f

ro
m

 F
ig

. 1
, t

ot
al

 a
na

ly
si

s 
ar

ea
, d

om
in

an
t 

H
L

 c
la

ss
 (

re
pr

es
en

tin
g 

78
1 

cl
im

at
e,

 se
as

on
al

ity
, s

ub
su

rf
ac

e p
er

m
ea

bi
lit

y,
 te

rr
ai

n,
 a

nd
 su

rf
ac

e p
er

m
ea

bi
lit

y)
, p

er
ce

nt
 a

re
a 

re
pr

es
en

te
d 

by
 d

om
in

an
t H

L
 cl

as
s, 

la
tit

ud
e a

nd
 lo

ng
itu

de
 o

f t
he

 ce
nt

er
 p

oi
nt

 
78

2 
of

 th
e 

ar
ea

, a
nd

 v
ul

ne
ra

bi
lit

y 
in

di
ce

s f
or

 te
m

pe
ra

tu
re

, p
ot

en
tia

l e
va

po
tr

an
sp

ir
at

io
n 

(P
E

T
), 

pr
ec

ip
ita

tio
n,

 S
’, 

sn
ow

, F
ed

de
m

a 
M

oi
st

ur
e 

In
de

x 
(F

M
I)

, a
nd

 se
as

on
al

ity
. 

78
3 

Si
te

 
# 

N
am

e 
A

re
a 

(k
m

2 )
 

D
om

in
an

t 
H

L
 C

la
ss

* 

%
 

D
om

in
an

t 
A

re
a 

C
oo

rd
in

at
es

 
V

ul
ne

ra
bi

lit
y 

In
de

x 

L
at

. 
L

on
g.

 
T

em
p.

 
PE T

 
Pr

ec
ip

. 
S'

 
Sn

ow
 

FM
I 

Se
as

on
al

ity
 

1 
B

el
lin

gh
am

 
21

2 
W

fL
TH

 
99

 %
 

48
.7

7 
-1

22
.4

5 
10

 
10

 
5 

1 
0 

9 
0 

2 
Sp

ok
an

e 
59

2 
D

fH
TH

 
80

 %
 

47
.6

4 
-1

17
.4

3 
10

 
10

 
6 

7 
10

 
3 

1 

3 
Se

at
tle

 
66

9 
W

fL
TH

 
78

 %
 

47
.6

0 
-1

22
.2

5 
10

 
10

 
4 

1 
0 

5 
2 

4 
M

tR
ai

ni
er

 
71

8 
V

sL
M

H
 

76
 %

 
46

.8
5 

-1
21

.7
9 

10
 

10
 

4 
2 

7 
4 

2 

5 
Y

ak
im

a 
43

8 
Sf

H
TH

 
86

 %
 

46
.6

3 
-1

20
.6

0 
10

 
10

 
3 

6 
0 

0 
0 

6 
Po

rtl
an

d 
93

2 
W

fH
TH

 
67

 %
 

45
.5

3 
-1

22
.6

6 
10

 
10

 
3 

2 
0 

6 
0 

7 
M

tH
oo

d 
83

4 
V

sH
M

H
 

81
 %

 
45

.3
7 

-1
21

.7
0 

10
 

10
 

3 
3 

7 
4 

3 

8 
U

m
at

ill
aN

F 
2,

14
7 

M
sL

M
H

 
29

 %
 

44
.8

7 
-1

18
.7

0 
10

 
10

 
6 

3 
6 

3 
4 

9 
W

ill
am

et
te

 
1,

23
4 

W
fH

TH
 

83
 %

 
44

.8
4 

-1
23

.1
4 

10
 

10
 

3 
2 

0 
4 

0 

10
 

C
ha

lli
sN

F 
4,

34
8 

W
sL

M
H

 
74

 %
 

44
.5

5 
-1

14
.7

5 
10

 
10

 
6 

0 
3 

2 
0 

11
 

B
en

d 
94

8 
Sf

H
TH

 
68

 %
 

44
.2

1 
-1

21
.2

6 
10

 
10

 
4 

8 
0 

3 
0 

12
 

Eu
ge

ne
 

52
3 

W
fH

FH
 

64
 %

 
44

.1
0 

-1
23

.1
5 

10
 

10
 

3 
1 

0 
2 

0 

13
 

B
oi

se
 

59
4 

Sw
H

TH
 

51
 %

 
43

.6
1 

-1
16

.2
4 

10
 

10
 

8 
8 

0 
2 

0 

14
 

M
al

he
ur

N
W

R
 

1,
35

5 
Sw

H
FH

 
69

 %
 

43
.2

7 
-1

19
.0

4 
10

 
10

 
6 

7 
0 

2 
0 

15
 

C
ra

te
rL

ak
e 

1,
72

1 
W

sH
TH

 
45

 %
 

42
.9

8 
-1

22
.0

8 
10

 
10

 
3 

2 
9 

3 
10

 

16
 

Po
ca

te
llo

 
34

9 
D

w
H

TH
 

45
 %

 
42

.8
8 

-1
12

.4
3 

10
 

10
 

7 
7 

0 
1 

0 

17
 

Si
sk

iy
ou

N
F 

92
6 

V
w

LM
H

 
10

0 
%

 
42

.3
6 

-1
24

.2
9 

10
 

10
 

2 
0 

0 
2 

0 

18
 

M
ed

fo
rd

 
37

5 
D

fL
TH

 
60

 %
 

42
.3

4 
-1

22
.8

9 
10

 
10

 
1 

5 
0 

2 
0 

19
 

Si
xR

iv
er

s 
1,

52
7 

V
w

LM
H

 
10

0 
%

 
41

.6
3 

-1
23

.7
9 

10
 

10
 

2 
2 

0 
4 

0 

20
 

M
tS

ha
st

a 
95

6 
W

w
H

M
H

 
49

 %
 

41
.3

6 
-1

22
.2

3 
10

 
10

 
1 

2 
0 

3 
0 

21
 

R
ub

yM
tn

 
1,

13
2 

D
fL

TH
 

44
 %

 
40

.6
8 

-1
15

.3
1 

10
 

10
 

6 
5 

9 
4 

0 

22
 

A
rc

at
a-

H
um

bo
ld

tC
o 

2,
51

1 
W

w
LM

H
 

63
 %

 
40

.6
2 

-1
24

.0
1 

10
 

10
 

3 
2 

0 
3 

0 

23
 

R
ed

di
ng

 
47

8 
M

w
H

TH
 

59
 %

 
40

.5
6 

-1
22

.3
8 

10
 

10
 

2 
2 

0 
2 

0 

24
 

B
at

tle
M

tn
 

90
2 

Sw
LM

H
 

75
 %

 
40

.0
9 

-1
16

.7
1 

10
 

10
 

6 
7 

0 
4 

0 

25
 

R
en

o 
38

2 
Sw

H
TH

 
40

 %
 

39
.5

4 
-1

19
.8

0 
10

 
10

 
4 

7 
0 

3 
0 

https://doi.org/10.5194/hess-2019-638
Preprint. Discussion started: 23 January 2020
c© Author(s) 2020. CC BY 4.0 License.



33
/4

9 
 Si

te
 

# 
N

am
e 

A
re

a 
(k

m
2 )

 
D

om
in

an
t 

H
L

 C
la

ss
* 

%
 

D
om

in
an

t 
A

re
a 

C
oo

rd
in

at
es

 
V

ul
ne

ra
bi

lit
y 

In
de

x 

L
at

. 
L

on
g.

 
T

em
p.

 
PE T

 
Pr

ec
ip

. 
S'

 
Sn

ow
 

FM
I 

Se
as

on
al

ity
 

26
 

G
re

at
B

as
in

N
P 

38
 

M
sL

M
H

 
10

0 
%

 
39

.0
1 

-1
14

.2
6 

10
 

10
 

4 
5 

0 
4 

1 

27
 

Sa
cr

am
en

to
 

85
5 

Sw
H

FH
 

88
 %

 
38

.5
7 

-1
21

.3
9 

10
 

10
 

6 
7 

0 
3 

0 

28
 

N
ap

a-
So

no
m

a 
1,

86
7 

M
w

H
TH

 
61

 %
 

38
.3

7 
-1

22
.5

3 
10

 
10

 
6 

5 
0 

3 
0 

29
 

Y
os

em
ite

N
P 

2,
45

5 
V

sL
M

H
 

44
 %

 
37

.9
3 

-1
19

.5
5 

10
 

10
 

4 
4 

9 
3 

0 

30
 

Sa
nF

ra
nc

is
co

B
ay

 
3,

35
6 

D
w

H
M

H
 

19
 %

 
37

.4
4 

-1
22

.2
9 

10
 

10
 

6 
5 

0 
5 

0 

31
 

Si
er

ra
N

F 
5,

34
9 

W
w

LM
H

 
31

 %
 

37
.1

7 
-1

19
.0

5 
10

 
10

 
4 

4 
0 

2 
0 

32
 

H
ig

hS
ie

rr
as

 
2,

23
9 

W
sL

M
H

 
32

 %
 

37
.1

5 
-1

18
.8

1 
10

 
10

 
2 

4 
1 

2 
0 

33
 

N
ev

ad
aT

es
tS

ite
 

3,
12

1 
A

w
H

M
H

 
67

 %
 

36
.9

6 
-1

16
.2

2 
10

 
10

 
5 

10
 

0 
4 

0 

34
 

Fr
es

no
 

1,
39

3 
A

w
H

FH
 

10
0 

%
 

36
.7

4 
-1

19
.9

1 
10

 
10

 
5 

8 
0 

4 
0 

35
 

D
ea

th
V

al
le

yN
P 

7,
86

2 
A

w
H

M
H

 
50

 %
 

36
.4

5 
-1

17
.0

3 
10

 
10

 
5 

10
 

0 
5 

0 

36
 

La
sV

eg
as

 
97

7 
A

w
H

TH
 

65
 %

 
36

.2
3 

-1
15

.2
6 

10
 

10
 

4 
10

 
0 

4 
0 

37
 

G
ra

nd
C

an
yo

nN
P 

3,
47

5 
Sw

H
M

H
 

28
 %

 
36

.2
2 

-1
12

.1
1 

10
 

10
 

4 
10

 
0 

6 
0 

38
 

Sa
nL

ui
sO

bi
sp

o 
2,

65
3 

D
w

LM
H

 
98

 %
 

35
.3

6 
-1

20
.6

3 
10

 
10

 
4 

4 
0 

4 
0 

39
 

B
ak

er
sf

ie
ld

 
3,

39
9 

A
w

H
FH

 
96

 %
 

35
.3

3 
-1

19
.1

4 
10

 
10

 
4 

9 
0 

4 
0 

40
 

Fl
ag

st
af

f 
36

5 
D

w
H

M
H

 
51

 %
 

35
.1

9 
-1

11
.6

0 
10

 
10

 
3 

4 
0 

4 
0 

41
 

Jo
sh

ua
Tr

ee
N

P 
2,

59
9 

A
w

LM
H

 
68

 %
 

33
.9

2 
-1

15
.9

9 
10

 
10

 
5 

7 
0 

5 
0 

42
 

W
hi

te
M

tn
s 

4,
85

5 
W

fL
M

H
 

23
 %

 
33

.8
7 

-1
09

.5
3 

10
 

10
 

4 
3 

0 
3 

0 

43
 

Ph
oe

ni
x 

2,
30

4 
A

w
H

FH
 

63
 %

 
33

.5
2 

-1
12

.1
1 

10
 

10
 

3 
10

 
0 

2 
1 

44
 

Sa
nD

ie
go

 
1,

27
6 

Sw
LM

H
 

37
 %

 
32

.9
0 

-1
17

.0
6 

10
 

10
 

4 
6 

0 
4 

0 

45
 

Tu
cs

on
 

1,
83

8 
A

w
H

TH
 

62
 %

 
32

.1
9 

-1
10

.9
5 

10
 

10
 

3 
9 

0 
1 

2 
* C

lim
at

e 
cl

as
s (

1s
t l

et
te

r):
  V

=v
er

y 
w

et
; W

=w
et

; M
=m

oi
st

; D
=d

ry
; S

=s
em

ia
rid

; A
=a

rid
 

78
4 

Se
as

on
al

ity
 c

la
ss

 (2
nd

 le
tte

r)
:  

f=
fa

ll;
 w

= 
w

in
te

r; 
s=

sp
rin

g;
 u

=s
um

m
er

 
78

5 
Su

bs
ur

fa
ce

 p
er

m
ea

bi
lit

y 
cl

as
s (

3r
d 

le
tte

r):
  L

=l
ow

; H
=h

ig
h 

78
6 

Te
rr

ai
n 

cl
as

s (
4t

h 
le

tte
r):

  M
=m

ou
nt

ai
n;

 T
=t

ra
ns

iti
on

al
; F

=f
la

t 
78

7 
Su

rf
ac

e 
pe

rm
ea

bi
lit

y 
cl

as
s (

5t
h 

le
tte

r):
  L

=l
ow

; H
=h

ig
h

78
8 

https://doi.org/10.5194/hess-2019-638
Preprint. Discussion started: 23 January 2020
c© Author(s) 2020. CC BY 4.0 License.



34/49 
 

Table 3. Percent of area of each HL category and classification within the six-state region (1971–2000) 789 

Category Classification Area (%) 
Climate Arid 21 % 

Semi-arid 34 % 

Dry 15 % 

Moist 9 % 

Wet 14 % 

Very wet 7 % 
Season Spring (AMJ1) 13 % 

Summer (JAS2) 1 % 

Fall (OND3) 24 % 

Winter (JFM4) 63 % 
Subsurface Perm. Low 40 % 

High 60 % 
Terrain 
 

Flat 7 % 

Transitional 63 % 

Mountain 30 % 
Surface Perm. Low 2 % 

High 98 % 
1AMJ: April, May, and June 790 
2JAS: July, August, and September 791 
3OND: October, November, and December 792 
4JFM: January, February, and March  793 
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Table 4. Hydrologic landscape characteristics of assessment units identified as vulnerable (having a vulnerability index 794 
greater than 7 on a scale of 10) for each metric. 795 

  % Assessment units that share HL classification 

  Climate1 Seasonality2 
Subsurface 

Perm.3 Terrain4 Surface perm.3 

V
ul

ne
ra

bi
lit

y 
Pa

ra
m

et
er

 Snow 75 % D, M, or W 87 % f or s 53 % L 82 % M 100 % H 

FMI 71 % V or W 65 % f  75 % L 75 % M 100 % H 

Seasonality 75 % W or M 76 % s 51 % H 83 % M 99 % H 

S’ 92 % A or S 79 % w 75 % H 87 % M or T 99 % H 

ppt 72 % D or S 79 % f or w 71 % H 97 % M or T 98 % H 

tmean 70 % D, S, or A 87 % f or w 60 % H 93 % M or T 98 % H 

PET 70 % D, S, or A 87 % f or w 60 % H 93 % M or T 98 % H 
1A=arid, S=semiarid, D=dry, M=moist, W=wet 796 
2f=fall, w=winter, s=spring 797 
3L=low, H=high 798 
4T=transitional, M=mountainous 799 

800 
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Appendix A 801 

 802 
Figure A1. Hydrologic Landscape maps of Washington, Idaho, Oregon, California, Nevada, and Arizona were used in the 803 
HLVA analysis [(a) Subsurface Permeability, (b) Seasonality of precipitation surplus, (c). Surface permeability, (d) Climate, 804 
and (e) Terrain]. Notes: The seasonality map for the PNW has been updated from the original Leibowitz 2016 HL map, as 805 
we separated their winter seasonality into two seasons (winter and fall).  806 

 807 

  808 
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Figure A2 (Plates 1–15) 809 

Time series of average decadal temperature, precipitation, snow (April 1 snow water equivalent (mm), potential 810 
evapotranspiration (PET), available water (S'), FMI, and seasonality for specific locations identified in Fig. 1 and Table 2 811 
in the western United States Dotted black line represents the 1971–2000 base period; the dashed red line connects the 2001–812 
2010 value to the 2041–2070 climate projections. Note that Oregon, Washington, and Idaho locations are displayed first in 813 
alphabetical order and are followed by those of California, Nevada, and Arizona. 814 

815 
.816 
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